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Analysis of the effects of lesions on a perceptron 
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Roma, Italy, and INFN, Sezione di Roma 

Received 21 February 1989 

Abstract. Gardner’s analysis is used to study the evolution of a perceptron trained on a 
rule-controlled mapping wsith exceptions after it has gone through an irreversible random 
process of deterioration or lesion. It is shown that entropy considerations lead to useful 
statistical inferences based on partial information about the consequences of the lesions. 
In particular i t  is shown that patterns that follow the rule are more robust than patterns 
that have an exceptional response. 

1. Introduction 

Gardner’s analytical calculation of the available volume in the phase space of interac- 
tions (Gardner 1988) has had a deep influence on our way of thinking. Her analysis 
demonstrated one possible way of handling new difficult concepts like the idea of the 
entropy of a neural network (Carnevali and Patarnello 1987, Denker et a1 1987). 

As my modest contribution to honour the memory of such an extraordinary woman 
I wish to show a simple example of how her calculation can be used in this way. In 
statistical mechanics growth of entropy controls the direction of evolution of a system. 
I will show how similar ideas can be used to analyse the fate of a network which after 
having learned a certain task is lesioned in a random way. 

In a previous letter (Virasoro 1988, hereafter referred to as V88) a network that 
has stored categorised patterns reacting after partial, random destruction of synapses 
was studied. Here I will show that the same result can be obtained solely from entropy 
considerations. The advantage of this new way of looking at the problem is that it 
allows for immediate generalisation to more general cases. The limitations will be 
discussed at the end. 

Just for the sake of novelty I will consider an apparently different kind of task for 
the system, but one that will turn out to be essentially isomorphic to the memorisation 
of categorised patterns. Let me assume that a feedforward two-layer system (a  percep- 
tron) is trained to map certain inputs to certain outputs but that, in the mapping 
presented, most of the corresponding pairs obey a simple rule except in a certain 
number of cases where the rule is not obeyed and the response is exceptional. 

The main conclusion will be that after the lesion if one looks at the ultimate fate 
of an equal number of regular and exceptional cases one will find that the regular 
patterns are more robust: the probability for one particular regular pattern to fail is 
smaller than the corresponding probability for an exceptional one. This is reminiscent 
of the general phenomenon of regularisation widely observed in patients. 
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2. The model 

Let me consider a perceptron with No input units and for simplicity a single output 
unit. For the sake of concreteness let me imagine that the machine is supposed to 
learn to read in a language where pronunciation is rather simple: to each letter there 
corresponds just one phoneme except when that letter is in a particular context defined 
by a string of characters which belong to a predefined set of possible exceptions. 

These exceptional strings of characters are chosen at random. Therefore in this 
simple language the difference between rule-governed behaviour and exceptional 
behaviour is maximal. In a real language the situation is more complicated because 
the exceptions in general show subregularities, i.e. they obey rules of a higher level of 
complexity. I believe that the results I am going to derive apply to this more realistic 
case. 

The central character is coded by a finite number F of neurons. The context will 
be assumed to include N neurons where N will eventually tend to infinity. It will 
follow from this analysis that the number of exceptions that the system can learn is 
strictly smaller than N and therefore can be much smaller than the number of regular 
responses. 

The response function is 

where 8;: is the kth bit (k = 1, N +  F )  in the a th  ( a  = 1, P )  input pattern, U, (k = 1, F )  
are the synapses converging from the F central input neurons, while Ji ( i  = 1, N )  are 
the synapses converging from all the other ones. 

If there were no exceptions then 
F 

Ji = 0 1 Ukti-MSg M > O  (2) 
k = l  

where the subscript R reminds us that by definition it is the regular response. But 
there are exceptions; i.e. among the P patterns there is a set R of PR regular patterns 
but there is also another set I with PI patterns for which the regular response is not 
correct and must be superseded by an irregular one. In order to learn such a situation 
the system must decrease M and make J, different from zero so that 

i = l  
(3) 

or equivalently: 
N 

-s: J,(P < M for regular patterns 

-sf; 1 JiSP> M 

I = ]  

N (4) 
for exceptional patterns. 

I = ]  

The calculation ‘a la Gardner’ of the volume V in J , ,  M space such that equations 
(4) are satisfied is straightforward. Notice that the natural normalisation condition is 

i = l  N 
so that the central synapses are typically larger than the Ji. This is a direct consequence 
of the task imposed on the network: the signal from the central character and the one 
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from the contextual string must be roughly of the same order. Using the same notations 
as in Gardner (1987): 

while the final result becomes 

s = (ln V) = (N/2)[ ln( l -  q )  + q / (1 -  q ) ]  

+ P R l  D r l n  H((-M+dq)/-)  

+PI! D t l n H ( ( M + r J q ) / G )  

where PR ( P , )  is the number of regular (exceptional) cases learned, 

(7) 

and Dt is the gaussian measure 
from the saddle point equations 

d t / f i .  The variables M ,  q are determined 

asla U = aS/aq = 0. (9) 

This result is identical to the one derived for correlated patterns once the parameters 
are conveniently translated. When PR >> PI, M will tend to infinity. For q # 1 

PlM2/2(1 - 9 )  (10) 7T e-M2/2  - s= (N/2)[ ln( l  - q ) + q / ( 1  - q ) l -  PR(l/ M)J( l  -q)2 

q = ( 2 P l / N )  In(PR/P,)+O(l). (12) 

It is noteworthy that the number of exceptions P,  can at most grow linearly with N 
while PR can grow exponentially. 

3. Entropy per pattern 

Perhaps the farthest reaching consequence of Gardner’s analysis is that it de-emphasises 
the choice of a learning procedure. S is an entropy decrease due to learning but rather 
than applying to one particular type of learning it can be better understood as a lower 
bound on the entropy decrease necessary to store the given patterns. How relevant 
this is from a biological point of view can be argued forever, particularly given the 
present day situation when there is no candidate for a biologically relevant learning 
mechanism. Eventually, when this mechanism is discovered, one will have to examine 
whether it is ergodic with respect to Gardner’s measure. Among those proposed in 
the literature there are some that are not ergodic. However in V88 we have already 
argued that they have to pay a cost for that: for instance, their storage capacity is not 
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optimal (Amit er a1 1989). It was also argued that any learning rule able to reach the 
maximal storage capacity and near the saturation of this capacity will lead the system 
towards a configuration whose properties can be obtained from Gardner's approach. 

If this is the case, S is the physical entropy of the network after learning and we 
can use it as in statistical mechanics to characterise the evolution of the system when 
lesioned or deteriorated in an irreversible way. Entropy considerations provide a 
concise language in which to take into account the different availability of phase space. 

The entropy in equations (7)  and (10) can be analysed as a function of the 
parameters. The derivatives aS/aP, and aS/aP, are the average entropy decrease per 
regular and exceptional patterns. More precisely, if a system with PR, PI patterns has 
to learn a new pattern, the additional decrease of entropy will be different according 
to which pattern is added. As the latter are generated with a certain probability 
distribution then we can talk of a probability distribution of the additional entropy. 
The average values are the above-mentioned derivatives but the fluctuations can also 
be calculated. 

Let me define as A V  the decrement in available volume when the new pattern has 
been stored. The moments of the distribution: 

( ( l -AV/V)") (13)  
can be calculated by the standard replica method or more directly using the cavity 
method (Mkzard 1989). For future discussions it is convenient to consider a slightly 
more general quantity A K V  which corresponds to a storage with a stability parameter 
K .  It is obtained by changing the constraints on the J introduced by the new pattern 
so that instead of equations (4) we consider 

N 

-s;t Ji&' < M - K for regular patterns 
i = l  

N 

-Sg 1 J i t Y > k f + K  for exceptional patterns. 
i = l  

The result for (13) is 

D t [ H ( ( - M  + d q +  K ) / - ) ] "  

Dt[ H( ( M  + tJq + K ) / - ) ] "  

for a regular pattern 

for an exceptional pattern. (i (15) 

(( 1 - AK V /  V)") = 

It is now possible to reconstruct the probability distribution of -AKV/ V from the 
moments 

Dt8[AKV/ v- 1 + H(-(*kf  - tdq - K ) / e ) ] ,  (16) 

4. Effects of lesions 

Suppose now that the lesion has occurred and the only thing known about it is that 
it has provoked the loss of a total number AP of patterns. For technical reasons AP 
is supposed to be small so that the state of the system has only been slightly perturbed 
and the values of U, q can be considered unchanged. I propose to use the maximum 
entropy principle to estimate other details about the way the system has evolved. 
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The first patterns to be lost will be the ones for which A V  is larger. Let me work 
on the region PR >> PI where the analysis can be done explicitly. From (16) for K = 0 
it is easy to see that for regular patterns the distribution PR is concentrated around 
AV/  V - 0  while for the exceptional ones it is concentrated around AV/  V =  1. If one 
checks the failures among an equal number of regular and exceptional patterns it 
follows that the number of regular patterns in that group that are lost will be exponen- 
tially small: i.e. the probability of a regular pattern failure will be exponentially 
negligible. This is the meaning of regularisation. 

However, this should not be read as implying that no regular patterns are lost. On 
the contrary the probability of a regular pattern failure is exponentially small but the 
total number of regular patterns is exponentially large so that the leading divergences 
compensate. A detailed analysis yields that the total number of regular pattern failures 
and the total number of irregular pattern failures are roughly of the same order. 

A detailed comparison between these results and the analysis in V88 shows both 
the limitations and the power of this approach. The conclusions (in particular all those 
stressed in both papers) are qualitatively the same but details differ. The reason lies 
in the fact that in V88 a detailed model for the process of lesion was assumed while 
here it is treated as a black-box process subject to some kind of statistical inference 
based on maximum entropy constrained by our information. In other words we are 
using entropy, as in Shannon, to complement our lack of knowledge. 

In fact in V88 if a pattern was lost during the lesion it did not mean that all traces 
of it disappear from the couplings J. Instead it meant that the corresponding constraint 
became: 

with K small and positive. With this modification in mind one can reapply the entropy 
argument. The volume decrement per pattern is now: 

SS = (A V - A, V)/ ( V - A V) (18) 

and the probability distribution becomes: 

(19) 

This distribution exactly coincides with the distribution of the stability field that appears 
in V88. From there on, both analyses will necessarily coincide. 

It is clear that in all statistical inferences based on maximum likelihood the results 
depend on our information about the process. This is a clear limitation and should 
always be kept in mind particularly when comparing the predictions with experimental 
data (for instance those coming from patients) or simulations. 

However, the enormous advantage of entropy considerations is that they can be 
easily generalised. Abstracting from this type of argument to that which necessarily 
will be valid in more general cases is easier. For instance, the fact that the entropy 
decrement per regular pattern is much smaller than the entropy decrement per excep- 
tional one can be seen as a direct consequence of the definition of regularity. Therefore 
it is reasonable to expect that phenomena like regularisation will in general be present. 
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